Applying Genetic Programming to Reservoir History Matching Problem
نویسندگان
چکیده
History matching is the process of updating a petroleum reservoir model using production data. It is a required step before a reservoir model is accepted for forecasting production. The process is normally carried out by flow simulation, which is very time-consuming. As a result, only a small number of simulation runs are conducted and the history matching results are normally unsatisfactory. In this work, we introduce a methodology using genetic programming (GP) to construct a proxy for reservoir simulator. Acting as a surrogate for the computer simulator, the "cheap" GP proxy can evaluate a large number (millions) of reservoir models within a very short time frame. Collectively, the identified goodmatching reservoir models provide us with comprehensive information about the reservoir. Moreover, we can use these models to forecast future production, which is closer to the reality than the forecasts derived from a small number of computer simulation runs. We have applied the proposed technique to a West African oil field that has complex geology. The results show that GP is able to deliver high quality proxies. Meanwhile, important information about the reservoirs was revealed from the study. Overall, the project has successfully achieved the goal of improving the quality of history matuching results without increasing the number of reservoir simulation runs. This result suggests this novel history matching approach might be effective for other reservoirs with complex geology or a significant amount of production data.
منابع مشابه
A Novel Assisted History Matching Workflow and its Application in a Full Field Reservoir Simulation Model
The significant increase in using reservoir simulation models poses significant challenges in the design and calibration of models. Moreover, conventional model calibration, history matching, is usually performed using a trial and error process of adjusting model parameters until a satisfactory match is obtained. In addition, history matching is an inverse problem, and hence it may have non-uni...
متن کاملDistance Dependent Localization Approach in Oil Reservoir History Matching: A Comparative Study
To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters but also provide a recursive estimat...
متن کاملConstructing Reservoir Flow Simulator Proxies Using Genetic Programming for History Matching and Production Forecast Uncertainty Analysis
Reservoir modeling is a critical step in the planning and development of oil fields. Before a reservoir model can be accepted for forecasting future production, the model has to be updated with historical production data. This process is called history matching. History matching requires computer flow simulation, which is very time-consuming. As a result, only a small number of simulation runs ...
متن کاملOptimization of Dez dam reservoir operation using genetic algorithm
Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As...
متن کاملFractured Reservoirs History Matching based on Proxy Model and Intelligent Optimization Algorithms
In this paper, a new robust approach based on Least Square Support Vector Machine (LSSVM) as a proxy model is used for an automatic fractured reservoir history matching. The proxy model is made to model the history match objective function (mismatch values) based on the history data of the field. This model is then used to minimize the objective function through Particle Swarm Optimization (...
متن کامل